Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microorganisms ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543611

RESUMO

As an enduring Chinese freshwater aquaculture product, the Eriocheir sinensis has a high economic value and is characterized by a catadromous life style that undergoes seawater-freshwater migration. However, little is known about their gut microbial status as they move from saltwater to freshwater acclimatization. Here, we sampled and cultivated Eriocheir sinensis megalopa from three aquaculture desalination ponds and investigated their gut microbiota diversity, community structures and biotic interactions from megalopa stage to the first juvenile stage after desalination for 9 days. Our results revealed that during the transition from megalopa to the first juvenile in Eriocheir sinensis, a significant change in gut microbial composition was observed (for instance, changes in relative abundance of dominant phyla), which was, however, not influenced by different sampling sites. The species diversity (such as the richness) of the gut microbiota showed a hump-shaped pattern along the succession. However, the compositional differences of the gut microbes showed constantly increasing patterns during the succession after freshwater adaption for all three sampling sites. Further co-occurrence analysis also showed that the complexity of the ecological networks in gut microbes was significantly enhanced during the development, such as increasing numbers of network links, connectivity and modularity, and was confirmed by decreasing average path length and proportions of negative links. Taken together, the differences in community structures and biological interactions of gut microorganisms were more pronounced in Eriocheir sinensis megalopa during desalination than in diversity and species compositions. This implies that the gut microbes of Eriocheir sinensis megalopa would become more robust and adaptive during the developmental process.

2.
Aquat Toxicol ; 267: 106832, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215609

RESUMO

Hepatopancreatic necrosis disease (HPND) broke out in 2015 in the Eriocheir sinensis aquaculture region of Xinghua, Jiangsu Province; however, the specific cause of HPND remains unclear. A correlation was found between HPND outbreak and the use of deltamethrin by farmers. In this study, E. sinensis specimens developed the clinical symptoms of HPND after 93 days of deltamethrin stress. The growth of E. sinensis with HPND was inhibited. Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of energy homeostasis, and its expression was up-regulated in the intestine of E. sinensis with HPND. Growth inhibitory genes (EsCabut, Es4E-BP, and EsCG6770) were also up-regulated in the intestine of E. sinensis with HPND. The expression levels of EsCabut, Es4E-BP, and EsCG6770 decreased after EsAMPK knockdown. Therefore, AMPK mediated the growth inhibition of E. sinensis with HPND. Further analysis indicated the presence of a crosstalk between the Toll and AMPK signaling pathways in E. sinensis with HPND. Multiple genes in the Toll signaling pathway were upregulated in E. sinensis under 93 days of deltamethrin stress. EsAMPK and its regulated growth inhibition genes were down-regulated after the knockdown of genes in the Toll pathway. In summary, the crosstalk between the Toll and AMPK signaling pathways mediates the growth inhibition of E. sinensis under deltamethrin stress.


Assuntos
Braquiúros , Piretrinas , Poluentes Químicos da Água , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Poluentes Químicos da Água/toxicidade , Piretrinas/toxicidade , Piretrinas/metabolismo , Nitrilas/toxicidade , Necrose , Braquiúros/metabolismo
3.
Fish Shellfish Immunol ; 138: 108816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236553

RESUMO

The occurrence of hepatopancreatic necrosis syndrome (HPNS) has seriously affected the sustainable development of Chinese mitten crab (Eriocheir sinensis) farming industry. Limited studies have focused on the immune responses in crabs with HPNS. Serine proteases (SPs) and SP homologs (SPHs) play important roles in the innate immunity of crustaceans. This study investigated the effects of HPNS on the expression levels of genes related to prophenoloxidase (proPO) activation system, and the relationship between Runt transcription factor and the transcriptions of these genes. Eight SPs and five SPHs (SPH1-4, Mas) were identified from E. sinensis. SPs contain a catalytic triad of "HDS", while SPHs lack a catalytic residue. SPs and SPHs all contain a conservative Tryp_SPc domain. Evolutionary analysis showed that EsSPs, EsSPHs, EsPO, and EsRunt were clustered with SPs, SPHs, POs, and Runts of other arthropods, respectively. In crabs with HPNS, the expression levels of six SPs (1, 3, 4, 6, 7, and 8), five SPHs, and PO were significantly upregulated in the hepatopancreas. The knockdown of EsRunt could evidently decrease the expression levels of four SPs (3, 4, 5 and 8), five SPHs (SPH1-4, Mas), and PO. Therefore, the occurrence of HPNS activates the proPO system. Furthermore, the expression levels of partial genes related to proPO system were regulated by Runt. The activation of innate immune system may be a strategy for crabs with HPNS to improve immunity and fight diseases. Our study provides a new understanding of the relationship between HPNS and innate immunity.


Assuntos
Braquiúros , Síndrome Neurológica de Alta Pressão , Animais , Serina Proteases/química , Serina Endopeptidases , Necrose/veterinária , Braquiúros/genética , Braquiúros/metabolismo , Imunidade Inata/genética
4.
Gene ; 864: 147324, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863531

RESUMO

Eriocheir sinensis is one of the most important economic aquatic products in China. However, nitrite pollution has become a serious threat to the healthy culture of E. sinensis. Glutathione S-transferase (GST) is an important phase II detoxification enzyme, which plays a leading role in the cellular detoxification of exogenous substances. In this study, we obtained 15 GST genes (designated as EsGST1-15) from E. sinensis, and their expression and regulation in E. sinensis under nitrite stress were studied. EsGST1-15 belonged to different GST subclasses. EsGST1, EsGST2, EsGST3, EsGST4, and EsGST5 belonged to Delta-class GSTs; EsGST6 and EsGST7 are Theta-class GSTs; EsGST8 is a mGST-3-class GST; EsGST9 belonged to mGST-1-class GSTs; EsGST10 and EsGST11 belonged to Sigma-class GSTs; EsGST12, EsGST13, and EsGST14 are Mu-class GSTs; EsGST15 is a Kappa-class GST. Tissue distribution experiments showed that EsGSTs were widely distributed in all detected tissues. The expression level of EsGST1-15 was significantly increased in the hepatopancreas under nitrite stress, indicating that EsGSTs were involved in the detoxification of E. sinensis under nitrite stress. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a transcription factor that can activate the expression of detoxification enzyme. We detected the expression of EsGST1-15 after interfering with EsNrf2 in the hepatopancreas of E. sinensis with or without nitrite stress. Results showed that EsGST1-15 were all regulated by EsNrf2 with or without nitrite stress. Our study provides new information about the diversity, expression, and regulation of GSTs in E. sinensis under nitrite stress.


Assuntos
Braquiúros , Nitritos , Animais , Nitritos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Regulação da Expressão Gênica , China , Braquiúros/genética , Braquiúros/metabolismo
5.
Front Immunol ; 13: 1021121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353630

RESUMO

Gene duplication (GD) leads to the expansion of gene families that contributes organisms adapting to stress or environment and dealing with the infection of various pathogens. C-type lectins (CTLs) in crustaceans undergo gene expansion and participate in various immune responses. However, the functions of different CTL produced by GD are not fully characterized. In the present study, two CTL genes (designated as PcLec-EPS and PcLec-QPS, respectively) were identified from Procambarus clarkii. PcLec-EPS and PcLec-QPS originate from GD and the main difference between them is exon 3. PcLec-EPS and PcLec-QPS respectively contains EPS and QPS motif in their carbohydrate recognition domain. The mRNA levels of PcLec-EPS and PcLec-QPS in hemocytes, gills, intestine and lymph underwent time-dependent enhancement after D-Mannose and D-Galactose challenge. Recombinant PcLec-EPS and PcLec-QPS could bind to carbohydrates and microbes, and agglutinate bacteria. The results of experiments on recombinant protein injection and RNA interference indicate that PcLec-EPS and PcLec-QPS can respectively strong recognize and bind D-Mannose and D-Galactose, activate the Relish transcriptional factor, and further upregulate the expression of different antimicrobial peptides (AMPs). In addition, these two CTLs and Relish could positively regulate the expression of each other, suggesting that there is a positive feedback loop between two CTLs and Relish that regulates the expression of AMPs. It may contribute to the expansion of the immune response for host quickly and efficiently eliminating pathogenic microorganisms. This study provides new knowledge for clear understanding the significance and function of different CTL generated by GD in immune defenses in crustacean.


Assuntos
Astacoidea , Lectinas Tipo C , Animais , Lectinas Tipo C/metabolismo , Peptídeos Antimicrobianos , Duplicação Gênica , Manose , Galactose , Retroalimentação
6.
Fish Shellfish Immunol ; 128: 168-180, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35921935

RESUMO

Proteins of Spätzle family play an essential role in innate immunity in invertebrates by activating the Toll pathway to induce the expression of antimicrobial peptides. However, little is known about the function of Spätzle in in the immune response of the Chinese mitten crab. In the present study, three novel Spätzle genes (named as EsSpz1, EsSpz2, and EsSpz3) were identified from Eriocheir sinensis. The genome structure of EsSpz1 contains two exons and an intron. Three Spätzle proteins all contain a Pfam Spaetzle domain. In the evolution, EsSpz1-3 cluster with other Spätzle proteins from crustaceans. EsSpz1-3 were widely distributed in multiple immune tissues. The expression levels of EsSpz1-3 in the intestine were remarkably upregulated after white spot syndrome virus (WSSV) challenge. The knockdown of EsSpz1-3 remarkably decreased the expressions of crustins and anti-lipopolysaccharide factors during WSSV infection. Moreover, EsSpz1-3 silencing remarkably increased the expression of WSSV envelope protein VP28. These findings suggest that new-found EsSpz1-3 in E. sinensis could promote the synthesis of antimicrobial peptides and inhibit the expression of VP28 during WSSV infection. Our study indicates that EsSpz1-3 in E. sinensis may participate in the innate immune defenses against WSSV by inducing the expression of antimicrobial peptides. This study provides new knowledge for the function of Spätzle in the antiviral immune defense in crustacean.


Assuntos
Vírus da Síndrome da Mancha Branca 1 , Animais , Antivirais , Proteínas de Artrópodes , Imunidade Inata/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia
7.
Fish Shellfish Immunol ; 124: 107-117, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378309

RESUMO

Eriocheir sinensis is a crustacean with great economic value, but the occurrence of hepatopancreatic necrosis disease (HPND) severely restricts the development of crab aquaculture. Study on the survival mechanism of crabs with HPND is beneficial to provide new strategies for disease prevention and control. The Forkhead box O (FOXO) transcription factor family is involved in various key biological processes of organisms. In this study, a FOXO gene (named as EsFOXO) from E. sinensis was cloned. The full-length cDNA of EsFOXO is 2592 bp containing a 2133 bp open reading frame that encodes 710 amino acids. EsFOXO was widely distributed in multiple immune tissues. Further study found that the expression of EsFOXO in the intestine of crabs with HPND was significantly upregulated compared with that in the normal crabs. However, whether EsFOXO is involved in the immune and metabolic regulation of crabs remains unknown. RNA interference analysis showed that EsFOXO participates in the positive regulation of the expression of two pancreatic lipases, three anti-lipopolysaccharide factors, and three crustins. Results from our research suggest that two strategies are adopted by crabs with HPND for survival under starvation: on the one hand, the synthesis of antimicrobial peptides is increased to improve the innate immunity; on the other hand, the expression of enzymes correlated with lipid catabolism is up-regulated that mobilizes the fat in the crab, going through catabolism. Our study provides more evidence for an in-depth understanding of the survival mechanism of crabs with HPND.


Assuntos
Braquiúros , Animais , Fatores de Transcrição Forkhead/genética , Imunidade Inata/genética , Lipase/genética , Lipase/metabolismo , Lipopolissacarídeos/metabolismo , Necrose , Peptídeos/genética , Filogenia
8.
Mol Immunol ; 138: 76-86, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364075

RESUMO

c-Jun NH2-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) that participates in the regulation of various physiological and pathological processes. In this study, we identified a novel JNK (EsJNK) and determined the cDNA sequence of its isoform (EsJNK-a) from the Chinese mitten crab Eriocheir sinensis. The open reading frame (ORF) of EsJNK was predicted to encode 421 peptides with a serine/threonine protein kinase, a catalytic (S_TKc) domain, and a low complexity region. The ORF of EsJNK-a was 1380 bp encoding a protein with 459 amino acids, which was 38 amino acids more than that of EsJNK. The predicted tertiary structure of EsJNK was conserved and contained 15 α-helices and 10 ß-sheets. Phylogenetic tree analysis revealed that EsJNK was clustered with the JNK homologs of other crustaceans. Quantitative real-time PCR assays showed that EsJNK was expressed in all the tissues examined, but it was relatively higher in hemocytes, muscles, and intestines. The expression of EsJNK mRNA in the hemocytes was upregulated by lipopolysaccharides and peptidoglycans, as well as by Staphylococcus aureus or Vibrio parahaemolyticus challenge. Functionally, after silencing EsJNK by siRNA in crabs, the expression levels of two antimicrobial peptides (AMPs), namely, anti-lipopolysaccharide factor and crustin, were significantly inhibited. The purified recombinant EsJNK protein with His-tag accelerated the elimination of the aforementioned bacteria in vivo. However, knockdown of EsJNK had an opposite effect. These findings suggested that EsJNK might be involved in the antibacterial immune defense of crabs by regulating the transcription of AMPs.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Imunidade Inata/imunologia , MAP Quinase Quinase 4/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Animais , Proteínas de Artrópodes/genética , Braquiúros/enzimologia , Braquiúros/genética , Hemócitos/imunologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA